A remark on compact automorphism groups of C∗-algebras

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compact automorphism groups of vertex operator algebras

Let V be a simple vertex operator algebra which admits the continuous, faithful action of a compact Lie group G of automorphisms. We establish a Schur-Weyl type duality between the unitary, irreducible modules for G and the irreducible modules for V G which are contained in V where V G is the space of G-invariants of V. We also prove a concomitant Galois correspondence between vertex operator s...

متن کامل

A Remark on Locally Compact Abelian Groups

I t has recently been shown by Halmos [l ] that there exists a compact topological group which is algebraically isomorphic to the additive group of the real line, an example being given by the character group of the discrete additive group of the rationals. Exploiting his argument a bit further it is easy to see that the most general such example is the direct sum of N replicas of the one alrea...

متن کامل

A remark on left invariant metrics on compact Lie groups

The investigation of manifolds with non-negative sectional curvature is one of the classical fields of study in global Riemannian geometry. While there are few known obstruction for a closed manifold to admit metrics of non-negative sectional curvature, there are relatively few known examples and general construction methods of such manifolds (see [Z] for a detailed survey). In this context, it...

متن کامل

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 1986

ISSN: 0022-1236

DOI: 10.1016/0022-1236(86)90081-9